For use in the [real-world data vignette](https://derele.github.io/MultiAmplicon/articles/MultiAmplicon-real-world-example.html)), we download a dataset containing details of the SRA dataset for BioProject PRJNA386767 "Intestinal biome sequencing of carnivores". We download the sample data from SRA, re-format it for our later analysis. And use the SRA run ids to download the raw sequencing files for precessing in the vignette.

carnivoreSeqRuns

Format

An object of class data.frame with 192 rows and 5 columns.

Source

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA386767

Examples

## This data was generated in R using the following code: if (FALSE) { ## create an SRA database connection library(SRAdb) sqlfile <- "SRAmetadb.sqlite" if(!file.exists(sqlfile)){ sqlfile <- getSRAdbFile() } sra_con <- dbConnect(SQLite(),sqlfile) carnivoreSeqRuns <- getSRA(search_terms = '"Intestinal biome sequencing of carnivores"', sra_con=sra_con, acc_only=FALSE) carnivoreSeqRuns <- carnivoreSeqRuns[, c('run','study','sample', 'experiment', 'sample_attribute')] sample.vars <- strsplit(carnivoreSeqRuns$sample_attribute, " \\|\\| ") sample.variable <- lapply(sample.vars, function(x){ what <- strsplit(x, ": ") variable <- lapply(what, "[[", 2) names(variable) <- lapply(what, "[[", 1) variable }) carnivoreSeqRuns <- cbind(carnivoreSeqRuns, do.call(rbind, sample.variable)) carnivoreSeqRuns$sample_attribute <- NULL runs <- carnivoreSeqRuns$run destDir <- "download_sra" if(!file_test("-d", destDir)) dir.create(destDir) fastqFiles <- list.files(destDir, pattern=".fastq.gz", full.names=TRUE) if(!length(fastqFiles)){ getSRAfile(runs, sra_con, fileType = 'fastq' , srcType = "ftp", destDir=destDir) fastqFiles <- list.files(destDir, pattern=".fastq.gz", full.names=TRUE) } }